Target Tracking Based on a Multi-sensor Covariance Intersection Fusion Kalman Filter

نویسندگان

  • Y. Jiang
  • J. Xiao
چکیده

Article history: Received: 11.9.2013 Received in revised form: 6.11.2013 Accepted: 26.11.2013 In a multi-sensor target tracking system, the correlation of the sensors is unknown, and the cross-covariance between the local sensors can not be calculated. To solve the problem, the multisensor covariance intersection fusion steady-state Kalman filter is proposed. The advantage of the proposed method is that the identification and computation of cross-covariance is avoided, thus the computational burden is significantly reduced. The new algorithm gives an upper bound of the covariance intersection fused variance matrix based on the convex combination of local estimations, therefore, ensures the convergence of the fusion filter. The accuracy of the covariance intersection (CI) fusion filter is lower than and close to that of the optimal distributed fusion steady-state Kalman filter, and is far higher than that of each local estimator. A numerical example shows that the covariance intersection fusion Kalman filter has enough fused accuracy without computing the cross-covariance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-sensor Information Fusion Steady-State Kalman Estimator for Systems with System Errors and Sensor Errors

In this paper, a multi-sensor information fusion steady-state Kalman estimator for discrete time stochastic linear systems with system errors and sensor errors is presented. Gevers-Wouters(G-W) algorithm is used in this paper. Steady-state Kalman estimator is presented in this paper avoids the complex Diophantine equation, and it is based on the ARMA model to compute the steady-state Kalman est...

متن کامل

Computational Complexity Comparison Of Multi-Sensor Single Target Data Fusion Methods By Matlab

Target tracking using observations from multiple sensors can achieve better estimation performance than a single sensor. The most famous estimation tool in target tracking is Kalman filter. There are several mathematical approaches to combine the observations of multiple sensors by use of Kalman filter. An important issue in applying a proper approach is computational complexity. In this paper,...

متن کامل

Covariance Intersection Fusion Kalman Estimators for Multi-Sensor System with Colored Measurement Noises

Abstract: For multi-sensor system with colored measurement noises, using the observation transformation, the system can be converted into an equivalent system with correlated measurement noises. Based on this method, using the classical Kalman filtering, this study proposed a Covariance Intersection (CI) fusion Kalman estimator, which can handle the fused filtering, prediction and smoothing pro...

متن کامل

Robust Decentralized Data Fusion Based on Internal Ellipsoid Approximation

Based on M-estimate, the problem of robust estimation fusion in decentralized architecture when the sensor noises are contaminated by outliers is considered. A simple robust Kalman filtering (RKF) scheme with weighted matrices of innovation sequences is introduced for local state estimation. Then, to avoid both the inconsistency of the Kalman filter and the performance conservation of the covar...

متن کامل

Adaptive Fusion of Inertial Navigation System and Tracking Radar Data

Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014